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1 Preface

We 1 present a meta-programming system embedded into Nemerle language.
It provides convenient tool for extending language, generating code, partial
evaluation and code transformation.

The paper is organized as follows. Section 2 introduces the notion of meta-
programming system and presents the core features of our design. In section
3 we present its implementation in Nemerle compiler. Section 4 presents
application of our system’s capabilities to partial evaluation. Then we extend
considered language subset with object-oriented constructs in section 5 and
present how meta-programming applies to concepts natural to languages like
Java and C#. In sections 6 and 7 additional features like syntax extensions
and type reflection are discussed. Finally, section 8 summarizes the related
work on the topic of meta-programming.

2 Introduction

Meta-programming is a powerful technique for software development. It was
incorporated into several languages, like Lisp macros [31], Scheme hygienic
macros [1], C [28] preprocessor-based macros, C++ [12] template system
and finally ML languages like MetaML [36] and Haskell Template Meta-
programming [30]. It is a convenient way of improving expressibility, perfor-
mance, code reuse and programmer’s productivity.

Despite their baroque nature C++ templates are used in fascinating ways
that extend beyond the wildest dreams of the language designers [3]. Also the
wide use of C preprocessor [15] shows that users find it convenient and ignore
its error prone semantics (purely textual macros). But drawbacks of these
two designs influenced the recent proposals. Besides all its advantages, meta-
programming has not been incorporated into today’s mainstream languages
like Java and C#. Our proposal is aimed to fill the gap between the extremly
expressive Scheme macros and popular object-oriented languages, which lack
the convenient macro system.

The essence of meta-programing is automated program generation. Dur-
ing this process programs are treated as object programs, which becomes the
data supplied to meta-programs. They can be then arbitrarily transformed
or analyzed and the final result is compiled just like a regular program.
These operations may be repeated or take place in stages. In the latter
case the generated programs can generate other programs and so on. A

1In this thesis, I use “we” to refer primaly to myself, though many of the design decisions

were made with other developers and after discussion within the community.
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meta-program may construct object-programs, combine their fragments into
larger object-programs, observe their structure and other properties, decom-
pose them. Meta-programs include things like compilers, interpreters, type
checkers, theorem provers, program generators, transformation systems. In
each of these a program (the meta-program) manipulates a data-object rep-
resenting a sentence in a formal language (the object-program).

The main real life applications of meta-programming are:

• adding new constructs to the language, which are not expressible in
core language as simple functions calls,

• generating programs specialized to some task,

• reducing the need of repetitive writing of similar code patterns,

• partial evaluation

• other optimization techniques based on compiler’s static information
about program.

2.1 Taxonomy of meta-programs

Following a simple taxonomy presented in [29] we can describe Nemerle as:

• Both program generation and analysis system. It is able to perform al-
gorithmic construction of programs and decomposing them using pat-
tern matching.

• Compile-time program generator, which is executed by compiler and
whose results are in-lined into the compiled program.

• Manually annotated. The body of program generator is divided into
meta-program and object-program. Staging annotations are used to
separate pieces of the program.

• Homogeneous. The meta-language and object-language are the same,
which simplifies both usage (user do not need to learn two languages)
and scaling the system to multilevel and run-time code generator.

• Two level language. Object-language cannot express a meta-program.
This limitation is valid for compile-time meta-system, because there is
rarely need for multi-stage programs.
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• Quasi-quote representation of object-programs. It gives the same ease
of use as string representation and algebraic-types’ assurance about
syntactic correctness of generated code.

• Object-programs are dynamically typed. In contrast to statically typed
meta-languages, which gives assurances about type-correctness of gen-
erated code, we type-check programs only after they are generated.
This is more flexible (allows imperative generation of programs) and is
still a viable design in compile-time system - programs are still type-
checked during the compilation process.

The more detailed list of features is presented in section 2.3.

2.2 Subset of Nemerle language

Nemerle is a general purpose object-oriented programming language with fea-
tures of ML-like functional languages (that is type inference, algebraic data-
types, pattern matching and first class functional values). For the purpose
of this section we define the subset of Nemerle’s expressions. The object-
oriented elements are described in section 5.

Here are the BNF rules for core Nemerle expressions.

〈program〉 ::= 〈expr〉+

〈expr〉 ::=
〈var〉

| 〈literal〉
| def 〈var〉 = 〈expr〉
| def 〈var〉 ( 〈var〉 ( , 〈var〉 )* ) 〈block〉
| 〈expr〉 ( [ 〈expr〉 ( , 〈expr〉 )* ] )
| 〈block〉

〈block〉 ::= { 〈expr〉 ( ; 〈expr〉 )* }

〈var〉 ::= set of identifiers

〈literal〉 ::= set of literals (integers, strings, etc.)

The def keyword has similar meaning to OCaml let. For example

def x = 5; x

is equivalent to
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let x = 5 in x

and

def f (x) { x + 1 }

relates to

let f x = x + 1

2.2.1 Meta-programming extension

Meta-language is a language for programming operations on object language.
It usually has its own syntax for describing various constructs of the ob-
ject language. For example, in our system, <[ 1 + f (2 * x) ]> denotes
the syntax tree of expression 1 + f (2 * x). This idea is called quasi-
quotation. The prefix quasi comes from the possibility of inserting values of
meta-language expressions into the quoted context – if g(y) is such an ex-
pression, we can write <[ 1 + $(g (y)) ]>, which describes a syntax tree,
whose second part is replaced by the result of evaluation of g(y).

We can now consider extending the language with meta-programming
constructs. Formally, we add following two productions to the core expres-
sions:

〈expr〉 ::=
| <[ 〈expr〉 ]>
| $ 〈expr〉

Meta-language allows us to operate on object programs easily. But at
some point of time we want to merge them into the final program and finally
run them. Most general meta-programming systems provide eval or run
construct for executing generated code. This implies that object code is
interpreted during run-time. In Nemerle we have mainly focused on compile-
time meta-programming, which yields that at run-time the whole program
is already compiled and won’t change.

Our model assumes that meta-programs are run by compiler and this
way all the code generation and transformation is performed at compile-
time. Here, the role of run construct is taken over by macros. Macros are
meta-programs, which are executed by compiler for every occurrence of their
invocation in program.

Macro is defined by the following rule:

〈macro definition〉 ::= macro 〈var〉 ( [ 〈var〉 ( , 〈var〉 )* ] ) 〈block〉
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and the program production is extended with

〈program〉 ::=
| 〈macro definition〉 〈program〉

Macro invocation has the same syntax as a standard function call. For
example f(x) is a function call, but if the name of functional value f binds
to the visible macro, like macro f (e) { ... }, then instead of generating
run-time function call the macro is executed and the generated code is in-
lined and processed further.

2.3 Features

Meta-programming systems varies on the design and implemented features.
In this section we summarize most components of our system and give the
basic reasoning behind our design.

2.3.1 Syntactic correctness

There are two common ways of representing object programs - as strings
(like in C preprocessing macros and most scripting languages like Bash, Perl,
Python) or as data-types (advanced meta-programming systems). With the
string encoding, we represent the code fragment f (x) simply as "f (x)".
This representation has the advantage of straightforward usage, programs
can be constructed and concatenated by simple operations on strings. But
deconstruction of programs and reasoning about their syntactic correctness
becomes quite hard. For example "f (x(" is a valid string literal, but it does
not represent syntactically valid object program.

When programs are represented using ML-like data-types (or any data
structures specially crafted for this purpose), their syntactic correctness is
implied by type system of meta-language (or invariants ensured by used data-
structure). For example using data-types in Nemerle (called variants there)
we can represent expressions of simple lambda calculus language defined with
the BNF rule

〈expr〉 ::=
〈x 〉

| 〈expr〉 〈expr〉
| λ 〈x 〉 . 〈expr〉

〈x 〉 ::= set of identifiers

by the following variant
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variant Expr {

| Variable { name : string }

| Apply { func : Expr; parm : Expr }

| Lambda { var : string; body : Expr }

}

The data-type encoding is roughly equivalent to abstract syntax trees of
the lambda calculus language. Every object of type Expr corresponds to the
valid lambda expression and vice-verse. For example code fragment λx.x is
created with Lambda ("x", Variable ("x")). This approach have also one
more great advantage, that object code can be inspected using the standard
Nemerle pattern matching facility.

Our system uses similar data-type representation internally, but we also
provide a special syntax called code quotations for constructing object code.
It allows us to specify the same code fragment as <[ λx.x ]> This way we
combine the ease of use of string encoding with the strength of the data-type
encoding. Quoted expression is accepted by parser only if it is syntactically
correct and Nemerle type system will ensure that all created objects are
correct with regard to variant defining expressions.

2.3.2 Hygiene

Hygiene relates to the problem with names capture in Lisp macros, resolved
later in Scheme. It specifies that variables introduced by a macro may not
bind to the variables used in the code passed to this macro. Particularly
variables with the same names, but coming from different contexts, should
be automatically distinguished and renamed.

Consider the following example:

macro identity (e) { <[ def f (x) { x }; f ($e) ]> }

Calling it with identity (f(1)) might generate a confusing code like

def f (x) { x }; f (f (1))

To prevent names capture, all macro-generated variables should be re-
named to their unique counterparts, like in

def f_42 (x_43) { x_43 }; f_42 (f (1))

In Nemerle we achieve hygiene by automatically associating contexts to
each variable created using <[ ]> quotations. Details are presented in section
3.4.
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Breaking hygiene The automatic hygiene in Nemerle can be overridden
in a controlled way. It is possible to create variables, which bind to names
from context of macro use site.

This way we can generate code, which introduces new names to the place
where the macro has been invoked. Also it is useful in embedding domain-
specific languages, which reference symbols from the original program.

macro interpret (symbol : string) {

<[ $(symbol : usesite) + 1 ]>

}

def x = 4; interpret ("x")

Breaking of hygiene is necessary here, because symbols are created by
parser of embedded language and we generate code, which need to have the
same context as variables from invocation place of macro.

Unhygienic variables Sometimes it is useful to completely break hygiene,
where programmer only want to experiment with new ideas. From our ex-
perience, it is sometimes hard to reason about correct contexts for variables,
especially when writing class level macros (section 5.3). In this case it is
useful to be able to easily break hygiene and after its basic functionality is
tested programmer can fix the hygiene issues.

Nemerle provides it with <[ $("id" : dyn) ]> construct. It makes pro-
duced variable break hygiene rules and always bind to the nearest definition
with the same name.

2.3.3 Lexical scoping

In Nemerle variables and global symbols are statically scoped. It means that
the place where they can be referenced is defined by the text of the program.
For local variables it is the enclosing block or function, for global symbols
the set of imported modules and namespaces.

With object programs, things are getting more subtle. We must first de-
fine how we understand lexical scoping of symbols in object code. In oppo-
sition to strong statically typed meta-programming languages like MetaML
[36] we do not require names in object-programs to follow their static scoping
in meta-program. Their scope is checked with respect to the final structure
of generated program.

The following code fragment

def body = <[ x ]>;

def function = <[ def f (x) $body ]>;

<[ $function; f (1) ]>

10



is a valid Nemerle program, but its counterpart would be rejected by
MetaML. MetaML would try to bind x in <[ x ]> to some definition in
scope, but in Nemerle we do not statically type-check object programs. It is
done only for final program, which in this case would be

<[ def f (x) { x }; f (1) ]>

This design gives much better expressibility, but we loose guarantees
about type-safety of generated object-programs. The full discussion of these
two approaches can be found in section 8.1.1.

Hygiene Still, as described in previous section, we maintain locality of
symbols in generated code. System automatically preserves us from inad-
vertent capture of names from external code and from the place of macro’s
usage.

This combination of ideas has proved to be very useful and seems to give
a good balance between expressibility of Lisp dynamic macros and hygienic
systems like Template Haskell and MetaML.

Global symbols

Definition 1 (Global environment) It is a pair (C, O) where C is the
current namespace in which given class resides and O is the set of imported
namespaces, opened classes (the using Name.Space; construct) and defined
type aliases. The notion of namespace is extensively used in .NET for mod-
ularization of programs and organizing large libraries.

We decided that object-programs should carry global environment of the
meta-program they are generated in. This is a logical choice, since macro can
be executed in many different contexts and we expect references to external
modules and classes to always bind to the same entities.

For example, consider following definition of macro:

using System.Console;

macro log (content) {

<[

WriteLine ("{0}: {1}", content.Location.File, content)

]>

}

where WriteLine is a function from System.Console module. This
macro will work no matter what modules are open in the place of its use, be-
cause quoted WriteLine reference carries its global environment from meta-
program.
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2.3.4 Syntax extensions

One of the main purposes of meta-programming system is language extensi-
bility. Macros allow us creating complex constructs, which were not express-
ible otherwise with standard built-in mechanisms, like calling functions from
predefined library.

For example consider addition of C-like while loop. We can define it
using macro producing recursive local function and its call.

macro while_macro (condition, body)

{

<[

def while_loop () {

when ($condition) {

$body;

while_loop ()

}

}

while_loop ()

]>

}

We can then use it as while_macro (true, print ("Hello")). But it
still lacks special syntax of original C construct. We can add it using Nemerle
syntax extending capabilities. We extend definition of our macro to

macro while_macro (condition, body)

syntax ("while", "(", condition, ")", body)

{ ... }

and now it is possible to write while (true) print ("Hello"). This
feature simplifies greatly a compiler implementation, but also gives user a
powerful tool for customizing language to her needs.

Syntax extending rules require that their first element is a keyword or
operator. Defining such a macro adds new keywords and parsing rules to the
namespace where it resides. When user do not import such a namespace, no
changes are visible. This way we can safely extend language not interfering
with existing code.

Detailed description of accepted syntax rules and its implementation is
described in section 6.

2.3.5 Type reflection

Macros are meant to extend compiler in a scalable way. In order to do this it
is often necessary that they have relatively the same capabilities to analyze
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given program as the compiler itself. In statically typed language that means
querying about the types of program fragments, inheritance relation, symbols
exported from external modules, etc.

In Nemerle we give access to the compiler API inside macros. This allows
meta-programmer to query about various information dependent on com-
pilation context (loaded libraries, passed command line options), but also
on current compilation state (sub-typing information about analysed classes
in program, visible local variables in given place, etc.). One of the hardest
tasks is reflecting the type of given expression, especially in presence of type
inference.

Consider an example macro foreach:

macro foreach (var, collection, body)

{ ... choose implementation according to collection type ... }

def a = array [1, 2, 3];

def l = List ();

l.Add (1);

foreach (x, a, ...);

foreach (x, l, ...);

It is necessary to use different algorithm for iterating over an array or a
list and macro should be able to choose it. In order to do this it must query
the type of collection expression. The straightforward way would be to
just execute typing function on it inside macro, but it becomes a problem
when current compilation state do not supply needed information to infer the
type. In fact Nemerle type inference is based on deferred type constraints
solving and often the actual type of expression is known only after typing
expressions proceeding it in program text.

Standard approach to macros fails on this issue, because it treats them
purely as parse-tree to parse-tree transformations, which are expanded before
typing is performed. We address this issue by deferring macro expansion until
type information requested by user is known. The algorithm is described in
section 7.

3 Implementation of core system

In this section we present the details of Nemerle macros’ core features im-
plementation. This description focuses only on expression based macros,
but also gives the insight into presented system, which will be extended in
following sections.
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Macro system in essence is mainly an extension of compiler, thus it is
closely bundled with it. For this reason we have to describe its implemen-
tation in context of internal compiler architecture. Conversely, the abstract
description of meta-programming part of Nemerle does not necessarily need
to get into implementation details. In fact, the goal of most programming
language designs is to hide underlying representation of language constructs
minimizing loss of expressibility and generality at the same time. In this
section we focus on internal workings of compiler and how we have built our
system to meet its basic requirements.

We start with description of involved compiler passes, interaction of macro
execution with them and then how we obtained the two core features - hygiene
and lexical scoping of symbols in object code.

3.1 Compiler passes

When we analyse how compilers normally work we learn that it is a pipeline
of very basic operations.

• Loading external libraries - here we load and initialize macros defined
in all referenced modules

• Scanning of textual program data into a stream of tokens. This is the
standard technique incorporated into roughly all compilers.

• Preparsing - the initial processing of lexer tokens, by grouping them
into tree of parentheses. This is not the common stage in most designs.
We use it mainly for deferring parsing of program parts in Nemerle
syntax extensions described in section 6.

• Main parsing phase. It builds the syntax trees, which are the main data-
structure macros are operating on. Parser must take syntax extension
rules into account when analysing preparsed token tree.

• Class hierarchy building is responsible for creating inheritance graph
of classes defined in the program and binding types of class members
(fields, methods). This stage is important, because it involves expand-
ing of top level macros (section 5) and building of classes representing
macros.

• Expression typing is the crucial stage for our implementation of meta-
system. It involves translation of code quotations and macro expansion
(including delayed expansions described in section section 7.2).
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• Code generation is the final compilation phase, where .NET meta-data
and Intermediate Language is created. It is orthogonal to meta-system.

3.2 Macros

Definition 2 (Program fragment) We will call the node of parse tree /
abstract syntax tree a program fragment. It is the representation that compiler
uses for untyped fragments of program.

Formally it is a term of sort PExpr following the definition of Nemerle
language subset in section 2.2:

〈PExpr〉 ::=
Var

| Literal ( Literal )
| Def ( Var , PExpr )

| DefFun ( Var , list [Var] , PExpr )

| Call ( PExpr , list [PExpr] )
| Block ( list [PExpr] )

〈Var〉 ::= Ref ( string )

〈Literal〉 ::= node representing literal (integers, strings, etc.)

Definition 3 (Macro) is an instance of class implementing a special inter-
face IMacro with Run : list[PExpr] → PExpr method. It transforms list of
program fragments into the new program fragment.

Macro class is automatically generated by compiler basing on macro dec-
laration (as defined in section 2.2.1).

A key element of our system is the execution of meta-programs during
the compile-time. To do this they must have an executable form and be
compiled before they are used.

Macros after compilation are stored in assemblies (compiled libraries of
code). All macros defined within an assembly are listed in its meta-data.
Therefore during the compilation, when linking of an assembly is requested
by user, we can construct instances of all macro classes and register them by
names within the compiler.

For this purpose we define a LookupMacro : PExpr → IMacro function
for accessing macro instances by name. It accepts only Ref nodes of program
fragments and is used during macro expansion.
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3.2.1 Separate Compilation

The current implementation requires macros to be compiled separately, be-
fore the compilation of the program that uses them. That is, all the macros
are loaded in the first phase of the compilation and the LookupMacro func-
tion is then fully defined.

This results in inability to define and use a given macro in the same
compilation unit. While we are still researching the field of generating and
running macros during the same compilation our current approach also has
some advantages.

The most important one is that it is simple and easy to understand –
one needs first to compile the macros (probably being integrated into some
library), and then load them into the compiler and finally use them. This
way the stages of compilation are clearly separated in a well understood
fashion – an important advantage in the industrial environment where meta-
programming is a new and still somewhat obscure topic.

The main problem with ad-hoc macros (introduced and used during the
same compilation) is that we need to first compile transitive closure of types
(classes with methods) used by given macro. This very macro of course
cannot be used in these types.

This issue may be hard to understand by programmers (“why doesn’t my
program compile after I added new field to this class?!”). Moreover, such
a dependency-closed set of types and macros can be easily split out of the
main program into the library.

Experiences of the Scheme community show [16] how many problems arise
with systems that do not provide clear separation of compilation stages. In-
deed, to avoid them in large programs, manual annotations describing de-
pendencies between macro libraries are introduced.

3.2.2 Macro expansion

Macro expansion is a process of substituting every occurrence of macro in-
vocation in program with the value of its evaluation.

Formally it is a process of replacing occurrences of

Call(t, parameters)

in program fragment where t is Ref containing the name of a visible macro
m, with the result of m.Run’s execution supplied with the list of program
fragments contained in parameters list. Following inference rule specifies
this step:
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LookupMacro(t) → m m.Run(parameters) ⇒run e e → e′

Call(t, parameters) → e′
(Expand)

The process is recursive, that is a single macro expansion can yield an-
other expansions, if there are occurrences of macro invocation in substituting
program fragment e.

3.3 Quotations

The quasi-quotes was first incorporated into Lisp programming language. Its
early use is described in [32]. The Lisp back-quote begins a quasi-quotation,
and a comma preceding a variable or a parenthesized expression acts as an
anti-quotation indicating that the expression should evaluate to object-code.
A short history of Quasiquotation in LISP [6].

The quotation system in essence is a syntactic shortcut for explicitly
constructing syntax trees using algebraic data-type representation of object
code. For example f(x) expression is internally represented by

Call (Ref ("f"), [Ref ("x")])

which is equivalent to <[ f (x) ]>. Translating the quotation involves “lift-
ing” the syntax tree by one more level – we are given an expression repre-
senting a program (its syntax tree) and we must create a representation of
such expression (a larger syntax tree). This implies building a syntax tree of
the given syntax tree, like

Call (Ref ("f"), [Ref ("x"))]

=>

Call (Ref ("Call"),

[Call (Ref ("Ref"), [Literal (StringLiteral ("f"))]),

Call (Ref ("Cons"),

[Call (Ref ("Ref"),

[Literal (StringLiteral ("x"))]),

Call (Ref ("Nil"), [])])])

or using the quotation

<[ f (x) ]>

=>

<[ Call (Ref ("f"), [Ref ("x")]) ]>

Now splicing means just “do not lift”, because we want to pass the value
of the meta-language expression as the object code. Of course it is only valid
when such an expression describes (is type of) the syntax tree.
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3.4 Hygiene

In this section we describe how we achieve hygiene in our system. As said
before, we associate “context” or “color” with every identifier in the program.
The Var from definition 2 must be updated to

〈Var〉 ::= Ref ( string , int , global environment )

Now identifiers from the object program are denoted Ref(v, c, g) where
v is the name of identifier, c is its color, and g is global environment for a
given symbol.

The point is to assign distinct color to symbols generated by each macro
invocation. If all the identifiers originating from a single macro execution
use the same context, the code returned from it preserves correct binding as
expected when generating code. Neither external declarations can capture
symbols from macro nor generated declarations are visible outside.

Our coloring system is quite simple. All plain identifiers introduced in
quotation receive the color of the current macro invocation (which is unique
for every single macro expansion). The identifiers marked with splicing
$(id : usesite) receive the color of the code that called the macro. This
can be the color of the initial code obtained from parsing a program, as well
as the color of some intermediate macro invocation. The example of such a
process is shown in figure 1.

Figure 1: Macro expansion. The gray triangle is a parsetree generated by
macro, where symbols have unique color assigned. The little white triangle
inside has two possible origins - it is a parameter of macro spliced into its
result or parsetree generated using usesite symbols.

After all macros are expanded and colors resolved we can say what each
name binds to. Regular lexical scoping rules apply – some terms define
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symbols, some other use it. Use refers to the nearest preceding declaration
with the same color. If there is no such declaration – the symbol is looked
up in global environment enclosed in each symbol.

3.4.1 Formal rewriting rules

The algorithm described above can be written using a set of rewrite rules
operating on PExpr terms representing program fragments. It is executed
before expression typing phase and will expand all macro invocations and
assign proper color and global environment to every identifier in program.

Identifiers introduced by macros (inside quotations) in a hygienic way
are denoted Ref(v, current(), g) while identifiers introduced with splicing
$(x : usesite) construct are marked Ref(v, usesite(), g). The global envi-
ronment g comes from the context within which the macro was defined. Top-
level object code is already colored with a single unique color and proper envi-
ronment, so identifiers take form Ref(v, c, g) where c /∈ {current(), usesite()}.

The LookupMacro : PExpr → IMacro ∗ int ∗ global environment func-
tion is extended after the Ref node and now returns a tuple of macro in-
stance, color and context contained inside the supplied Ref .

e1 → e′1 . . . en → en

F(e1, . . . , en) → F(e′1, . . . , e
′

n
)

(Mon) where F /∈ {Ref, Call}

Ref(v, x, g) → Ref(v, x, g)
(MonV ar)

LookupMacro(t) → (m, u, g′) m.Run(ps) ⇒run e e ⇒(u,g
′)

c
e′ e′ → e′′

Call(t, ps) → e′′
(Expand)2

LookupMacro(t) 6→ (m, u, g′) t → t′ ps → ps′

Call(t, ps) → Call(t′, ps′)
(MonCall)

e1 ⇒
(u,g

′)
c

e′1 . . . en ⇒(u,g
′)

c
en

F(e1, . . . , en) ⇒
(u,g′)
c F(e′1, . . . , e

′

n
)

(ColMon) where F /∈ {Ref}

Ref(v, usesite(), g) ⇒
(u,g′)
c Ref(v, u, g′)

(ColUse)

Ref(v, current(), g) ⇒
(u,g′)
c Ref(v, c, g)

(ColCur)

Ref(v, x, g) ⇒
(u,g′)
c Ref(v, x, g)

(ColSkip) where x /∈ {current(), usesite()}

2where c is a fresh color

19



Definition 4 We say that e is valid if it does not contain terms of the form
Ref(v, current(), g) and Ref(v, usesite(), g).

Definition 5 We say that e is in normal form if it is valid and does not
contain any subterm Call(t, ps) where LookupMacro(t) → (m, u, g).

Normal form is thus an object code without macro invocation and with
full color information.

Theorem 1 For any valid e, there exists its e′ in normal form, such that it
can be proved that e → e′.

Proof 1 Rules for both → and ⇒ are syntax-directed and defined for all
terms. Thus, for any e there exists e′, such that e → e′. Moreover, usage of →
eliminates all occurrences of Call(t, ps) where LookupMacro(t) → (m, u, g),
usage of ⇒ guarantees elimination of all current() and usesite() introduced
by macros.

Note that this process does not necessarily terminate (because of Run
stage), but this is the very essence of our design. Macros are programs
created by user and it is her responsibility to make it terminating. What can
be proved is that if all macros terminate for all possible inputs, then entire
macro expansion process terminates.

3.5 Lexical scoping

The coloring algorithm yields proper lexical scoping of local variable decla-
rations in generated code. But also references to globally visible symbols are
propagated correctly from macro declaration. The ColUse rule introduces
color and context from macro’s invocation site into symbol and ColCur rule
stores context originating from the macro declaration site. This way global
references are interpreted the same way in quoted code and inside macro that
generates it.

3.5.1 Cross stage persistence of global symbols

Some meta-programming languages (like MetaML and MetaOCaml) provide
the feature of cross stage persistence.

Definition 6 (Cross stage persistence) Symbol is cross stage persistent,
when it is bound at one level and it is used at a higher level.
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In Nemerle we allow cross stage persistence only of global symbols, which
is its very special case. Here the “bound at one level” means that symbol is
imported and visible at that level, so the only difficulty in using it at higher
level is proper names translation, which is achieved by our algorithm.

In Nemerle all the other objects must be explicitly lifted and are not
cross-stage persistent. We have found this limitation a consistent choice in
connection with the fact that symbol references are resolved after code is
generated, not earlier. Consider

def e = <[ def x = 5 ]>;

def x = 10;

<[ $e1; x ]>

In statically typed meta-language the reference to x in last line would bind to
the declaration in second line (and the x value would need to be cross stage
persistent). If that declaration were not present, the error would occur. In
Nemerle meta-variables are not considered directly visible in object code and
x is bound in a standard way to the declaration contained in e.

On the other hand, a general cross stage persistence gives a very pow-
erful and convenient tool for utilizing values computed at current stage in
generated code. In Nemerle we provide a set of Lift functions, which perform
the translation of some values into code recreating them (it is easy only for
constant literals and built-in types, e.g. lists of literals). For other types
user need to create them by her own. It would be possible to extend Nemerle
with a new construct like $(x : lift) which provided a real cross stage
persistence of x, but it would be inevitably limited. The implementation
would need to create a special storage for such values in the meta-program’s
binary, serialize them somehow, store in that storage and generate a code,
which would call the deserialization routine. The limitation comes from our
compilation model - we compile meta-program to a separate binary and then
use it as code transformation function when compiling other programs. Meta-
programs and object-programs never execute side-by-side. The hypothetical
Run function would remove this limitation, as meta-programs were executed
at run-time.

4 Partial evaluation

Partial evaluation [23] is a program optimization technique also known as
program specialization. It is based on the same concept as projection in
analysis or currying in logic, which in essence, is specializing two argument
function to one argument function by fixing one input to a particular value.
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In programming languages setting it requires program transformation, which
can be performed conveniently using meta-programming.

For a given program P (s, d) with inputs s and d we generate a new
program Ps1

(d) by fixing s to s1.

(P (s, d), s1) → Ps1
(d)

such that

∀s, d P (s, d) = Ps(d)

In general purpose partial-evaluation systems, the generation of Ps1
is

performed by partial evaluator based on static input s1 and program P (usu-
ally as text). It is usually done automatically: first, during so called binding
time analysis [22] step partial evaluator determines, which parts of program
are static and which parts are dynamic, then the specialized program can
be generated. The most common problem with such an automatic process is
that it’s inaccurate, requires very complex analysis of code and is almost out
of control. The alternative approach is based on manual annotating program
parts to be computed statically or dynamically. The concept of multi-stage
programming [35] takes it even further and allow specifying several stages
of computation. This way programmer has great control over the partial
evaluation.

Our system provides a good framework for code generation and can be
used as a basis for automatic partial evaluator, though in this thesis we show
its capabilities as a two-stage programming system. The interesing work on
merging those two approaches exists [26] and is a good research topic for
future Nemerle development.

The following sections provide examples, which are both presentation of
our system in practice and motivation for it in context of partial evaluation.

4.1 Power function - classical example

The very first example of using meta-programming as partial evaluation tool
is specializing a power function pow : R × N → R

pow(x, 0) = 1.0

pow(x, n) = x ∗ pow(x, n − 1) ∀n > 0

One of the most efficient ways of computing it is the logarithmic power
algorithm. Its implementation in Nemerle is presented below:

22



def sqr (x) { x * x }

def power (x, n)

{

if (n == 0)

1.0

else

if (n % 2 == 0) // even

sqr (power (x, n / 2))

else

x * power (x, n - 1)

}

As we can see it divides n by 2 if it is even and decrements by 1 if it is
odd. In former case it performs square operation and in latter multiplication
by x parameter. Note that the pattern of those operations depends only on
n - parameters x and n are independent.

Here we come to the point - when we want to have specialized power
function for some n, then we know exactly what operations it will perform
on second argument. For example optimal pattern for x5 is x ∗ x22

. Now we
want the compiler to be able to generate this optimal set of operations for
us. Here is the macro to perform this operation:

macro power1 (x, n : int)

{

def pow (n) {

if (n == 0)

<[ 1.0 ]>

else

if (n % 2 == 0) // even

<[ sqr ($(pow (n / 2))) ]>

else

<[ $x * $(pow (n - 1)) ]>

}

pow (n);

}

We will give two different, but in general equivalent descriptions of what
is happening here.

First you can view this as staged computation [34]. We defer performing
of sqr and * operations until x is known at run-time, but we are free to
perform all the others like comparisons of n and recursion at earlier stage. In
the result only the optimal pattern of multiplication and square operations
will be executed at run-time. The power1 macro is just a function, which
performs first stage of computation (at compile time). The result of using
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this macro is inlining the second stage operations at the place of usage.
This way the <[ ]> brackets can be considered as markers of second stage
computation.

The other way of understanding the example is by its implementation in
Nemerle compiler. It is a function generating code, which will be substituted
at the place of its usage. The power1 function simply generates the code of
arithmetic expression composed of multiplications and square operations. As
mentioned earlier we utilize the fact, that n is independent from x and basing
on that we know exactly how resulting expression should look like. Here we
can view <[ ]> brackets as what they really are - syntax for constructing
parts of new Nemerle code.

The macro above can be easily used to create specialized function

def power74 (x)

{

power1 (x, 74)

}

or directly in code (which would yield direct in-lining of expressions and
might be not a good idea for large chunks of generated code).

4.2 Imperative code generation

The example from previous section was easy to stage, because of its functional
implementation style. The function body is composed of the conditions and
recursive calls, but control flows always from top to bottom (no other jumps
are performed). This is crucial for staging, because we can mark sub-trees in
some branches of flow tree to be deferred to next stage as shown in figure 2.

Also, it is feasible only if we can divide the operations in the tree into two
stages with a horizontal line. Those to be performed at first stage should be
positioned in the upper half, so after executing them we can return expression
describing the rest of operations from lower half. Those will be computed at
the next stage.

Unfortunately sometimes the algorithm we work on isn’t structured this
way. Operations from different stages are interleaved, so we cannot do any
computation before we need some of the dynamic input. Such a problem of-
ten arises when algorithm uses elements of imperative programming, that is
computing expressions for side effects. For example imperative loop, whose
side effect is to sequentially perform operations in the body, is entirely depen-
dent on their stage. Expressions, which will be staged should always finish
the control flow, but as loop can be repeated, they are not, thus the whole
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Figure 2: Control flow of the example function. Operations in white boxes
are performed at the first stage (o1, c1, c2 ), while grayed (c3, o2, o3 ) in
second stage. Dotted arrows denotes changing the stage.

loop must be deferred until next stage and we might loose some opportunities
for partial evaluation.

The only solution not requiring a total rewrite of the algorithm is to ex-
plicitly store parts of generated code in some collection and at the end create
final computation from it. For example the mentioned loop can be performed
at first stage and expressions emerging from its unrolling are collected and
then inlined into generated code.

The drawback is that staged version of program becomes more complex
this way. Still, imperative approach often simplifies implementation of many
algorithms and is easier to understand. We show that the negative impact
of imperative style on staging (and partial evaluation) is not that great.
Especially the ability to generate code imperatively allows us to handle it
conveniently, which might be impossible at all in more conservative meta-
programming systems.

4.2.1 Permutation function

Let us consider a function for computing permutation of given array. It takes
input array as first parameter and array specifying the permutation as second
parameter:
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permute (data : array [int], permutation : array [int]) : void { ... }

where permutation array describes permutation as positions at which
elements of input should appear in output (like for input 3, 2, 1 and permu-
tation 2, 1, 3 the output will be 2, 3, 1). The algorithm utilizes the fact that
this representation directly exposes cycles of permutation and to permute
the elements we must simply move each of them by one position on its cycle.
It is presented below

permute (data : array [int], permutation : array [int]) : void

{

def visited = array (permutation.Length);

// we visit each cycle once using this top loop

for (mutable i = 0; i < permutation.Length; i++)

{

mutable pos = i;

// we walk through one cycle

while (!visited [pos])

{

visited [pos] = true;

// moving its elements by one position

def next_pos = permutation [pos];

unless (visited [next_pos]) {

data [pos] <-> data [next_pos];

pos = next_pos;

}

}

}

}

As we can see this algorithm perform operations on data only in one line

data [pos] <-> data [next_pos]

which is the swap operation on elements of array. The rest of its steps
is performed only basing on contents of permutation. This quickly leads us
to the conclusion, that if we statically know this array, we can have highly
optimized version of permute, which performs only sequence of swaps.

First we must obtain the value of permutation array inside our first stage
function (a macro). The simplest way would be to store it in some static field
visible to the macro, but we can also decompose the syntax tree of expres-
sion initializing an array, so it can be passed directly as macro’s parameter.
Second problem is that original permute function uses imperative style, so
we must defer computation also in this style, explicitly building sequence of
final computations.
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macro permute1 (data, p_expr)

{

def permutation = expr_to_array (p_expr); // new

def visited = array (permutation.Length);

mutable result = []; // new

for (mutable i = 0; i < permutation.Length; i++)

{

mutable pos = i;

while (!visited [pos])

{

visited [pos] = true;

def next_pos = permutation [pos];

unless (visited [next_pos]) {

result = <[

$data [$(pos : int)] <-> $data [$(next_pos : int)]

]> :: result; // new

pos = next_pos;

}

}

}

<[ {..$result } ]> // new

}

As we can see the function didn’t change much. We had to add the
variable result, which is the list of resulting expressions to execute. It is
used at the end in <[ {.. $result } ]> expression - the sequence of swaps
on data is the result of macro (note that the expressions are in reversed
order, but in this example it does not change the result of function).

permute and permute1 can be used as follows:

Run (data) {

def permute_specialized (data) {

permute1 (data, array [10, 7, 11, 0, 12, 5, 6, 9, 4, 2, 1, 8, 3]);

}

def perm = array [10, 7, 11, 0, 12, 5, 6, 9, 4, 2, 1, 8, 3];

permute (data, perm);

permute_specialized (data);

}

4.3 Transforming interpreter into compiler

Partial evaluation introduces a novel approach to compilation and compiler
generation. We can specialize an interpreter with a given program to obtain
the compiled target program, which no longer require interpreting to run.

27



Such partial evaluator can be seen as a compiler of the language, for which
the interpreter was written, into the target language of evaluator.

(Interpreter(p, input), p1) → p1compiled(input)

This process is often called the first Futamura projection, initially reported
in [17]. Like mentioned before, partial evaluation implemented through meta-
programming do not allow automating the process, so we cannot simply use
interpreter and specialize it with given program. We can derive the new
implementation by decorating interpreter code with staging annotations, ex-
plicitly specifying which operation should be performed at compile-time and
which should be left to run-time. This approach gives much more freedom in
changing the code which will be generated. With automatic partial evaluator
we would depend completely on implementation of the interpreter (and par-
tial evaluator) and had to accept that target program would always perform
the subset of exact operations of the interpreter. This doesn’t give much
place for customizing or experimenting with code generators. We might also
loose some opportunities for optimization as we show later.

In this section we present an example of creating specializable interpreter,
by rewriting an interpreter of small language into a macro equivalent to the
language’s compiler. The model for operations performed in the language
will be the following class representing a robot.

class Robot

{

Orientation : int;

X : int;

Y : int;

IsDown : bool

{

get { Orientation == 1 }

}

}

It serves as an abstract state machine, which will be modified during
execution of interpreted program. It could be arbitrarily extended without
influencing described method.

Let us consider the set of terms

Expr ::= move(I) | left | right | value(S) | if(Expr, Expr, Expr)

which is represented by the algebraic type Expr
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variant Expr {

| MoveBy { steps : int; }

| Left

| Right

| Value { prop : string; }

| If { cond : Value; then : Expr; els : Expr; }

}

Program in this language is just a list of Expr terms. In real-life applica-
tion they could be created from textual representation by some automatically
generated parser targeting the .NET platform. In the rest of this section we
focus on what happens after such an abstract syntax tree is generated.

4.3.1 Standard interpreter

Considered language is composed mostly of statements modifying the state
of Robot object, which is our model of virtual machine (or environment).
The only expression yielding a value is Expr.Value used inside the Expr.If

condition, but it also depends on environment. Of course we could implement
a simple lambda calculus here, like in [35], but we find our example simpler
and still presenting the equivalent technique.

The interpreter is traversing structure of supplied expression and ap-
ply requested operations to the robot object. The interesting part is the
check_value local function, computing value of property with given name
(supplied as string) by querying the object at run-time. In the staged version
we will be able to make this dynamic operation static and in consequence
much faster.

The rest of interpreter implementation is straightforward and is roughly
equivalent to the denotational semantics of the language.

Run (obj, expr)

{

def check_value (val) {

// we rely on .NET run-time reflection capabilities

// to fetch value of property with given name

System.Convert.ToBoolean (obj.GetType ().

GetProperty (val.prop).GetValue (obj, null))

}

match (expr) {

| Expr.MoveBy (steps) =>

match (obj.Orientation) {

| 0 => obj.X += steps

| 1 => obj.Y += steps

| 2 => obj.X -= steps
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| _ => obj.Y -= steps

}

| Expr.Left => obj.Orientation = (obj.Orientation + 3) % 4;

| Expr.Right => obj.Orientation = (obj.Orientation + 1) % 4;

| Expr.Value as val => _ = check_value (val)

| Expr.If (val, e1, e2) =>

if (check_value (val))

Run (obj, e1)

else

Run (obj, e2)

}

}

4.3.2 Staged interpreter

The problem with standard interpreter is that it must traverse expressions at
run-time, which costs time. This is especially painful for programs, which do
not change in time and are known at compile-time. The standard approach
for removing this overhead is to write a compiler for the language. It would
transform every input program to some target language (usually the native
machine code). Unfortunately compilers have traditionally required much
more skill and time to implement correctly than interpreters.

In this section we show how to obtain the same result by creating the
staged interpreter. We divide computation performed by interpreter into two
stages. First one is the preprocessing phase doing the traversal of input
expressions. The other one consists only of actions specified in program,
but do not involve any manipulation of expressions describing it. The first
stage is independent of second one and can be completely executed before
the run-time.

In case of our language the process is composed of annotating the stan-
dard interpreter with code quotations and splices (in multistage programming
referred to as staging annotations). The recursive nature of our interpreter
implementation allows us to think about the process purely as staging the
program. It is not always the easiest approach though, as shown in section
4.2, but here this abstraction is very elegant and useful. The operations,
which must be deferred to run-time execution are those dependent on run-
time data, that is the environment (Robot object). We enclose them with
<[ ]> in function below.
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GenerateRun (obj, expr)

{

def check_value (val) {

<[ $obj.$(val.prop : dyn) ]>

}

match (expr) {

| Expr.MoveBy (steps) =>

<[ match ($obj.Orientation) {

| 0 => $obj.X += $(steps : int)

| 1 => $obj.Y += $(steps : int)

| 2 => $obj.X -= $(steps : int)

| _ => $obj.Y -= $(steps : int)

}

]>

| Expr.Left => <[ $obj.Orientation = ($obj.Orientation + 3) % 4 ]>;

| Expr.Right => <[ $obj.Orientation = ($obj.Orientation + 1) % 4 ]>;

| Expr.Value as val => <[ _ = $(check_value (val)) ]>

| Expr.If (val, e1, e2) =>

<[ if ($(check_value (val)))

$(GenerateRun (obj, e1))

else

$(GenerateRun (obj, e2))

]>

}

}

Note that check_value does no longer rely on dynamic invocation of
property getter to obtain the value. It is now statically type-checked and
compiled to more effective run-time constructs (no need for reflecting mem-
bers of given object at run-time). It is a common case where more static
information about program yields additional optimizations, not available in
standard interpreter otherwise.

4.3.3 From interpreter to compiler

We have created two implementations of expression interpreter, but the sec-
ond one operates on deferred computations (program fragments). Their us-
age differ, in our model only the macro can be consumer of program fragment.

In order to use single stage interpretation we run it consecutively on each
expression from the list (a program). The staged interpreter is executed
inside macro, which yields running first stage at compile time and generates
program fragment containing the whole second stage computation.
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Both functions use the external function Scripts.GetScript to load
the program containing list of expressions to be interpreted against supplied
Robot object.

Run (obj, name : string)

{

def script = Scripts.GetScript (name);

_ = script.Map (fun (e) { Scripts.Run (obj, e) });

}

macro GenerateRun (obj : PExpr, name : string)

{

def script = Scripts.GetScript (name);

def exprs = script.Map (fun (e) {

Scripts.GenerateRun (obj, e)

});

<[ { ..$exprs } ]>

}

One of the most important features of our design is that at the place of
use, calling macro looks like standard function call. This way, after defining
both our interpreters we can use them with the same syntax.

def robot = Robot ();

Run (robot, "script1");

GenerateRun (robot, "script1");

The generated machine code and performance differs largely. The
GenerateRun macro in-lines much more efficient code, which is semantically
equivalent to running single stage interpreter.

5 Top level macros

The large novelty of Nemerle meta-system, especially in context of industrial
usage is how it handle object-oriented layer of language. We have incorpo-
rated concepts of hygiene and code quotations to the domain of method and
class definitions. It brings concept of program generation to the object hi-
erarchy of program. This proves a very useful tool, where OO methodology
implies usage of common design patterns and / or requires writing similar
code in many places.

The example could be the need to automatically generate wrappers for
some library, methods constituting some design pattern or entire object hi-
erarchy from database schema.
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Our experiments show, that the most useful macros for operating on
class hierarchy requires much wider interoperability with compiler than sim-
ple syntax directed transformations on its data-structures. This is why we
decided to expose the compiler API for usage inside macros. This approach
allows user to query compiler about inheritance relations, types of members
in given class, etc.

5.1 Language extended with OO components

We now describe the subset of object-oriented syntax of Nemerle language.

〈program〉 ::=
| 〈class definition〉 〈program〉

〈class definition〉 ::=
class 〈var〉 [ : 〈var〉 ( , 〈var〉 )* ] { 〈class member〉 * }

| interface 〈var〉 [ : 〈var〉 ( , 〈var〉 )* ] { 〈class member〉 * }

〈class member〉 ::=
〈var〉 ;

| 〈var〉 ( [ 〈var〉 ( , 〈var〉 )* ] ) 〈block〉
| this ( [ 〈var〉 ( , 〈var〉 )* ] ) 〈block〉

〈expr〉 ::=
| 〈expr〉 . 〈var〉 // member access
| this . 〈var〉
| 〈expr〉 = 〈expr〉 // assignment expression

For program and expr non-terminals only the new rules are specified.
The semantics of classes, interfaces and member access is the same as

in C# or Java. Each class definition implicitly introduces its constructor
functions (methods with a name this) to the scope. Those functions create
values of given class’ type, whose can be then used to access fields or invoke
methods. this expression is used to access members of current class instance
(it is also the same as in C#).

This object model allows for simple class sub-typing. In our simplified
language we assume all members are publicly accessible and inherited in
subclasses.
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5.1.1 Stages of class hierarchy building

Analysing object-oriented hierarchy and class members is a separate pass of
the compilation (as mentioned in section 3.1). First, it creates inheritance
relation between classes, so we know exactly all base types of given type.
After that, every member inside of them (methods, fields, etc.) is being
analysed and added to the hierarchy. After that also the rules regarding
implemented interface methods are checked.

For the needs of macros we have decided to distinguish three moments
in this pass at which they can operate on elements of class hierarchy. Every
macro can be annotated with a stage, at which it should be executed.

• BeforeInheritance stage is performed after parsing whole program and
scanning declared types, but before building sub-typing relation be-
tween them. It gives macro a freedom to change inheritance hierarchy
and operate on parse-tree of classes and members

• BeforeTypedMembers is when inheritance of types is already set. Mac-
ros can still operate on bare parse-trees, but utilize information about
subtyping.

• WithTypedMembers stage is after headers of methods, fields are al-
ready analysed and in bound state. Macros can easily traverse entire
class space and reflect type constructors of fields, method parameters,
etc. Original parse-trees are no longer available and signatures of class
members cannot be changed.

Later on we refer to these stages when describing class level macros.

5.1.2 Changes to meta-system

As we said in previous section, we want to algorithmically generate program
fragments not only for expressions as before, but also for elements of class
hierarchy. The syntax of <[ ]> quotations must be extended to distinguish
those elements from core expressions (that is because ambiguity between
function call and method definition syntax).

The additional rule for <expr> production is

〈expr〉 ::=
| <[ decl : ( 〈class declaration〉 | 〈class member〉 ) ]>

Macro invocation also differs, because class-level syntax does not include
calling defined elements. Classes and their members are just declarations.
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Although, C# and Nemerle does include a clean syntax for annotating mem-
bers with meta-data. We have incorporated this idea to specify that given
element should be transformed by a macro.

The class definition and class member productions are extended to in-
clude this new syntax:

〈class definition〉 ::=
| [ 〈expr〉 ] 〈class definition〉

〈class member〉 ::=
| [ 〈expr〉 ] 〈class member〉

Where expression inside [ ] is expected to be the macro invocation.
The example of class declaration with macro annotations is

[ClassMacro ()]

class House : Building

{

HasGarage;

[FieldMacro ()]

Inhabitants;

LivingCosts (cost_per_person)

{

Inhabitants * const_per_person

}

}

Expansion of class-level macros is performed at class hierarchy building
phase of compilation (defined in section 3.1). It involves similar technique as
expression macros expansion, but here every executed macro is supplied with
an additional parameter describing an object, on which macro was placed.
This way it can easily query for properties of that element and use compiler’s
API to reflect or change the context in which it was defined (as mentioned
at the beginning of section 5).

For example a method macro declaration would be

[Nemerle.MacroUsage (Nemerle.MacroPhase.WithTypedMembers,

Nemerle.MacroTargets.Method)]

macro MethodMacro (t : TypeBuilder, m : MethodBuilder, expr)

{

// use ’t’ and ’m’ to query or change class-level elements

// of program

}
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Macro is annotated with additional attributes specifying respectively the
stage in which macro will be executed (one of defined in section 5.1.1), and
the macro target.

5.2 Implementing design patterns

As a motivation for macros operating on object hierarchy we present an
example how usage of design patterns can be automated and simplified.

Design patterns [18] are meant to ease programmers’ work by distinguish-
ing various common schemes of creating software and solving most often oc-
curring problems. They identify and name patterns of interaction between
objects in program and then suggests them as widely accepted solutions for
problems.

The downside of many design patterns is that they often require imple-
menting massive amount of code, which tends to be the same most of the
time. Some patterns just point out how particular objects could communi-
cate or what should be the inheritance hierarchy of classes representing given
model. These patterns are just hints for programmers what is the preferred
way of structuring their programs in chosen situations. Unfortunately others
often imply large non-creative work for programmers trying to follow them.
This is barely a waste of their time and leads to increased maintain costs.

With meta-programming approach, we could just write a generator for
all methods, wrappers, auxiliary instances, etc. which need to be created in
particular design pattern.

5.2.1 Proxy design pattern

PROXY pattern is based on forwarding calls to some object A into calls to
another object B. Usually the object B is contained in an instance field of A.

The point of this is to imitate behavior of B in a new class. Usually we
can just use derived class, but in case we do not have a direct way of creating
B, but obtain existing instance externally (e.g. remote object on server, etc.),
we have to query it in every operation. Proxy pattern allows us to promote
instance of such object to the class, which now can also be extended with
a new functionality. For example, we can implement B ’s interface in A (by
simply passing all calls to B) and then override some of these methods with
a new behaviour in derived class.

Suppose we have a class

class Math : IMath

{

public Add(x : double, y : double ) : double { x + y; }
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public Sub(x : double, y : double ) : double { x - y; }

...

}

implementing IMath interface. Now we create a MathProxy class, which
will provide full functionality of IMath by using externally created instance
of Math.

The point is that forwarding every call in IMath requires a considerable
amount of code to be written. We will use a macro, which generates needed
methods automatically.

// Remote "Proxy Object"

class MathProxy : IMath

{

// the stubs implementing IMath by calling

// math.* are automatically generated

[Proxy (IMath)]

math; // object of type Math

this()

{

math = ObtainExternalReferenceToMath ();

}

}

From the user’s perspective MathProxy can be used just like it was a
subtype of Math but no additional methods must be written - in a standard
approach programmer must manually write methods like:

Add( x, y ) {

math.Add (x,y);

}

The implementation of Proxy macro is presented below:

[Nemerle.MacroUsage (Nemerle.MacroPhase.WithTypedMembers,

Nemerle.MacroTargets.Field)]

macro Proxy (t : TypeBuilder, f : FieldBuilder, iface)

{

// find out the real type specified as [iface] parameter

def interfc = BindType (iface);

foreach (meth in interfc.GetMethods ())

{

// prepare interface method invocation arguments

def parms = meth.GetParameters ().Map (fun (p) {

<[ $(p.ParsedName : name) ]>

});
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// prepare function parameters of created method

def fparms = parms.Map (Parsetree.Fun_parm);

// define the wrapper method

t.Define (<[ decl:

$(meth.ParsedName : name) (..$fparms) {

this.$(f.ParsedName : name).$(meth.ParsedName : name) (..$parms)

}

]>)

}

}

Ignoring some of the implementation details (like creating program frag-
ments for invocation arguments and method parameters), this macro is a
simple function iterating over given interface’s methods and adding wrap-
pers for them to current class.

Moreover, macro can be easily customized and extended, so for example
it can mark members with specified attributes, omit some of them, etc.

5.3 Hygiene considerations

Class level constructs of the language bring new problems regarding hygiene
and how symbols are bound. When we consider member access operation,
especially with ability to omit this. part for members of current class, we
need to distinguish what the current class is and how it relates to hygiene of
macro created symbols.

In this section we describe our design and implementation of class level
hygiene. Some of the decisions might sound unintuitive and needs special
explanation.

5.3.1 ’this’ reference

First of all, variables accessed through explicit usage of this, like this.x

are always bound to the members of class, where generated code resides.
This is not only the most intuitive semantics, but roughly the only valid one.
One could imagine that the name should be looked up in its own context (its
originating macro declaration, as described in section 3.4), but the only point
of using this is to specify that name should be bound to the member of class
specified by this reference. Now, we must take a look at what class this

may point to. As macros are independent of class hierarchy (and in particular
they are not instance methods), there is no valid class at the place of macro
declaration, which created the discussed expression. The only possibility at
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this point is to use lexically visible class at the place where generated code
finally gets expanded and requiring that it is inside instance method.

5.3.2 Class symbols

For the plain symbols at expression level the standard scoping mechanism
referred to in section 3.4 must be extended to consider references to class
names and members. x might bind to the local variable (generated by a
macro or locally defined) or to the member of current class (in which case it
is the same as this.x). Local variables have precedence in this algorithm,
that is if both local variable and class member with correct name are visible,
then the former symbol is chosen.

Standard hygiene rules apply here - only definitions in the same context
(macro color) as analysed symbol are considered visible. But in case of the
class members, the search is performed only if the symbol’s color matches
the current class’ color.

Note, that we do not check the context of candidate class member’s decla-
ration, but class itself. This is because members are always accessed through
object instance, not directly. Thus, we just require that the considered sym-
bol reference was generated together with the class it relates to. The reason
behind such a design is visible in following example

[Nemerle.MacroUsage (Nemerle.MacroPhase.BeforeInheritance,

Nemerle.MacroTargets.Class)]

macro AddMethod (ty : TypeBuilder) {

// add a new method to the current type

ty.Define (<[ decl:

my_method (x) { x }

]>);

}

...

[AddMethod]

class A {

foo () { my_method (1) }

}

If we required the context of my_method declaration and usage to be the
same (which is not true in above example, because my_method is created
inside the macro), it would lead to quite unintuitive behaviour. On the other
hand, if we think about class members purely as meta-data associated with a
class, then our approach seems reasonable. The important condition is that
class’ context must match the used symbol. This way the following code will
work as expected
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macro inject (body) {

<[ def f (x) { x + 1 } f ($body) ]>

}

...

class B {

f (y) { inject (y) }

}

Here f introduced by a macro is hygienic and the generated expression f (y)

will be resolved to the local function call, not recursive call to method B.f.
The algorithm described above ensures such a behaviour, because B has a
different color than generated f.

5.3.3 Implementation

The implementation of the class level symbols coloring is an extension of the
rewrite rules from section 3.4. We apply the existing rules (especially Mon
and MonVar to the terms describing the added language elements: class
definitions, class members and expressions).

The Expand rule can apply to the macro invocations present in attributes.
The only modification here is that we pass additional parameters to the Run
method.

The only nontrivial modification needed is the symbol lookup after all the
macro expansion and coloring transformations are done. For symbol reference
Ref(id,col,g) it is bound to the declaration from one of the following cases
(in decreasing priority):

• If it is a part of member access expression, first the object part is looked
up and it is expected to have a type of class containing id member.

• There exists a local value (variable or function) declaration in scope of
current class method or global program with name id and color col.

• The current class’ color is equal to col, it contains id member and the
current class method is an instance method.

• There is a static method or class visible in g global environment.

If none of the above cases are valid, an error is issued.
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5.4 Aspect-Oriented programming

Aspect-oriented programming was first proposed [25] as a solution for code
“tangling”, where the distinct aspects of design need to be merged manually
in real programs to achieve efficient implementation. The problem arises
when there are several cross-cutting concerns in one fragment of program (e.g.
like synchronization, logging, iterating over data and modifying data), which
would otherwise be written separately. In large programs there is always
a trade-off between code simplicity (no tangling) and efficiency (manually
optimized code).

The idea of AOP is to program operations concerning each of the single
aspects of design in a single place and then have an automatic aspects weaver
to combine them into the working program. The initially presented design
[25] of this operation resembles a kind of macro transformation. There is so
called component language in which the base structure and functionality of
program is coded (like the used functions, classes, etc.) and aspect languages,
which specify how some additional code is merged into the base program.
Aspect weaver plays a role of macro expander.

In further research, operations available in aspects were constrained and
finally they lost the character of general programs operating on code frag-
ments. They became a sort of specification language [11] for modifying code
and classes in a predesigned way, like in AspectJ [24]. Currently the concepts
introduced in AspectJ are the standard vocabulary in AOP literature and
include following elements of aspect language:

• pointcut - Aspect-oriented languages allow to specify a set of execution
points in program (join points), where cross-cutting behaviour is re-
quired. These points can be altered by the aspect-weaver to introduce
behaviour specified in aspects.

• advice - A piece of advice is code that executes at a pointcut. Advices
are inserted into pointcuts according to the specification introduced by
aspect.

• aspect - Aspect is a set of specifications of how to insert advices into
the program code or modify it with introductions.

• introduction - An introduction is a programming element, such as an
attribute, constructor or method, which can be added by aspect to
the given type extending or modifying it. Also the object-oriented
hierarchy of classes can be modified.
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Nemerle meta-programming system together with exposed compiler’s API
can be used to implement aspect-oriented model. This would lead to the
compile-time aspect language (as opposed to byte-code manipulation uti-
lized in AspectJ [21]) and easier visualisation of programs created during
consecutive weaving of aspects.

On the other hand, meta-programming allows much more than a prede-
fined insertions of code and it could be used to generalize the AOP approach.
Our experience suggests that algorithmic code transformation is a convenient
and simple way of solving similar problems. Also using custom attributes to
mark methods and classes for transformation is a more localised (and thus
easier to read and understand) way of specifying the pointcuts.

6 Syntax extensions

Usually programming languages have predefined fixed syntax, which is core
part of their specification. Some of them (like Lisp [31] and Scheme [1])
use a very uniform and flexible notation, which allows specifying new syntax
constructs in a convenient way. Others (like Camlp4 [13], OpenJava [37],
Java Syntactic Extender [4]) allow extending some fixed grammar entries.

Cardelli studies [10] extensible grammars in a more formal way, where user
is allowed to define new non-terminals and extend existing ones. The new
grammar is then statically type-checked for unambiguity and consistence.
The LL(1) parsing functions are then generated.

The motivation behind the syntax extensions is to give user ability to
extend the language and customize it with the needs of particular project.
There is a raising need for embedding domain-specific languages into the
general purpose ones [8]. They are especially useful in presence of general
macro system, where user can specify semantics of new syntax and embedded
language in a convenient way.

Nemerle has built-in syntax extension capabilities. In our design we de-
cided to rely on a rather ad hoc approach, which gives less static assurances,
but is easier to use and at the same time more flexible in most of the use
cases.

Extensions in Nemerle are limited to the fixed places of language gram-
mar (like in Camlp4), but they have the ability to defer parsing of entire
fragments of token stream. This gives convenient tool for adding simple syn-
tax constructs and at the same time a little more effort (supplying an own
parsing function) allows embedding entirely new language into Nemerle.
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6.1 Base system

Base system of syntax extensions is quite simple and easy to use, but also
lacks expressibility. Every macro can be marked with one or more syntax
patterns. Syntax pattern is a list of tokens and grammar elements expected to
appear in parsed input token stream to constitute given extension. It defines
a new production for one of the non-terminals in a language grammar.

After such a macro is loaded, compiler adds syntax patterns defined for
it to a special tree describing extended language syntax. The tree is build
dynamically during parsing, based on the set of imported namespaces. New
productions are merged into the tree - common prefix of productions is rep-
resented by a single path, while the first token on which they differ causes
branch. If there is a node, where two productions end or the branch occurs on
two non-terminals, which do not have distinguishable first valid characters,
parser cannot decide which path should be chosen. Error is though reported
only if user tries to parse the code, which is ambiguous. This is our design
decision, syntax extensions are dynamic, although we could easily analyze
the grammar when merging new syntax, so opening two namespaces with
conflicting syntax would yield an error. This would make syntax extensions
more limited, for example one opens two conflicting namespaces, but only for
the purpose of using disjoint syntax patterns. In this case we would forbid
completely valid code.

As an example of described technique consider following two macro defi-
nitions:

macro if_then (cond, expr)

syntax (‘‘if’’, ‘‘(’’, cond, ‘‘)’’, expr)

{ ... }

macro if_then (cond, expr1, expr2)

syntax (‘‘if’’, ‘‘(’’, cond, ‘‘)’’, expr1, ‘‘else’’, expr2)

{ ... }

Syntax patterns have common prefix, so they are merged into tree-like
pattern presented in figure 3.

Parser always chooses the longest matching path when processing input.
Thus, for the if/else example the else option will be used when possible.

The algorithm described above is just a simple transformation performed
in most parser generators [2] when analysing productions for single non-
terminal. Its purpose in Nemerle is to be the base for more powerful deferred
parsing described below and have the advantage that it do not confuse users
with complex grammar based system.
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Figure 3: if/else grammar tree

6.2 Parsing stages

Base extensions system can be implemented easily in a standard recursive-
descent parser. We must add a function, which walks the extensions tree
while processing the input token stream. It should gather syntax elements
defined in pattern (which will become actual arguments of the macro invo-
cation) and when it get into the node which ends syntax pattern of macro
m, then the macro invocation expression m(p1, . . . , pn) is returned.

But in order to embed arbitrary language inside Nemerle grammar we
need the more general way of extending parser. In particular we would like
to specify that given fragment of program should be parsed by a completely
different function. User should be able to easily specify that function and
the part of code to be parsed with it.

To solve the problem we have created an additional preparsing phase
(mentioned in section 3.1), which processes token stream from lexer before
it is analysed by actual parser. Its main task is to match into groups the
commonly used open and closing brackets (i.e. () parentheses, {} braces, []
and <[ ]> brackets). Every bracket pair composes a token group.

Definition 7 (Token group) The node of the token tree created by prepars-
ing stage, containing representation of token stream fragment. It contains a
list of tokens and token groups. Every bracket pair is divided into token
groups separated by separator token specific to given brackets kind (period ,

for () and [], semicolon ; for {} and <[ ]>).

This preprocessing stage helps also in reporting parse errors. Mismatched
parentheses are the very common mistake in program and we can deal with
it by reporting which exact brackets do not match. Also error recovery is
later easier, in case of error we can just skip processing of entire token group
and continue.

Summarizing, there are three stages before we get the parse-tree represen-
tation of textual program. First standard scanning phase transforms program
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text into a stream of tokens, after that pre-parsing phase creates the tree of
token groups and finally the main parser builds the program fragment, which
is then used in macros and typed.

6.3 Deferring parsing

The most important advantage of dividing input in described way is that we
can separate the whole token group from parsing by main parser and use
completely different algorithm to analyse it. This solves one of the posed
problems, that is specifying which fragment of program should be treated
differently.

In order to process such token gropus insie macro, one of its parameters
must be annotated with Token type. Such an argument can only be the
result of parsing syntax extension, because standard program fragment can
never be in unparsed form. Thus, if we do this, macro must also supply a
syntax pattern containing given parameter name. When parser is processing
the syntax pattern and if the next node is Token, then it takes the nearest
token group from the input and places it as an argument for macro invocation
node.

For example followin macro definition

macro xml_literal (tokens : Token)

syntax ("xml", tokens)

{

// process ’tokens’

}

introduces syntax for parsing code like

...

def x = xml <person><name>John</name></person>;

...

The second of our problems (giving user the ability to parse distinguished
part of program by supplied function) is immediately solved by allowing
macro to be parametrised by token group. Inside macro, arbitrary functions
can be used and token group can be parsed by routine specified there. We
give user a full freedom here, but it is consistent with our design. There is
already the assumption that macros are allowed to execute arbitrary code,
here we only change the state of objects we pass to it. Deferred parsing is
all performed by macros during their expansion.

The largest disadvantage of described method is that input stream is
initially transformed before macro can analyse it and separator tokens have
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special meaning here. For example we cannot use ; inside the xml literal
presented above, because it closes the current token group. This leads to
the following restriction on languages embedded using this technique: only
languages conforming lexical and token tree structure of Nemerle can be
parsed without modifying compiler itself.

6.4 Extending top level

The syntax extensions we have described above were all attached to the
expression level macros. When we consider the language with object-oriented
constructs described in section 5.1 it is reasonable to extend syntax also for
them.

Note that macros operating on those constructs were till now specified
inside custom attributes, which we have used to mark entities occurring at top
level. We chose to maintain this design and make syntax extensions closely
bundled to types and their members’ declarations. The new syntax can occur
at the fixed places in existing nonterminals’ productions and are translated
as annotating members with attributes. Alternatively we could make syntax
extensions introduce their own elements to the abstract tree, which would
be later expanded like macros. The only situation where this might lead to
more expressibility is for programs or classes without any standard member.
If there were any, attaching the macro to it and later ignoring additional
parameter would result in the same effect.

We have also reused the system of syntax patterns specifying the list of
grammar elements, which must occur in the input. In this case parsing of
an extension is triggered at the several chosen places in grammar production
constituting given entity. The most commonly used ones are at the beginning
of production and between the header and body of standard class member.
For example it is possible to use new syntax before methods and types or
after their declaration’s prologue.

These hard-coded rules are meant to imitate idea of decorating members
with new meta-data, just like custom attributes. Such approach can also be
seen in OpenJava [37].

Consider two examples of top level syntax extensions.

[Nemerle.MacroUsage (Nemerle.MacroPhase.BeforeInheritance,

Nemerle.MacroTargets.Method)]

macro Requires (_ : TypeBuilder, m : ParsedMethod, assertion)

syntax ("requires", assertion)

{ ... }

[Nemerle.MacroUsage (Nemerle.MacroPhase.BeforeInheritance,
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Nemerle.MacroTargets.Method)]

macro Async (_ : TypeBuilder, m : ParsedMethod)

syntax ("async")

{ ... }

They modify the body of method to include respectively the validation
of given boolean assertion and making it executed asynchronously. They can
be used in a following way:

class Foo {

Bar (x) requires (x > 0)

{ ... }

async Execute (name)

{ ... }

}

7 Type reflection

As we have mentioned in the introduction, macros in statically typed lan-
guage should offer more than simple syntactic transformations. They should
be able to reflect the static types of supplied expressions in order to generate
highly specialized code. In languages like Lisp there are no types at all and
macros are always limited to reflect only syntactic structure of input. In some
interesting applications this is not sufficient and would not allow macros to
be used for tasks, which are perfectly suited for them. The problems arise
especially when we must deal with assumptions and design of target plat-
form similar to .NET, for example division of all objects into value-types and
reference types, where comparison to null is valid only for reference types
and macro should be able to take it into account during code generation.

In Nemerle we have directly exposed some of compiler’s API to the
macros. This way we can analyse class hierarchy like in section 5, but also
ask about the type of given expression. This is the natural approach and it
works well in language with explicit type annotations at every declaration
or with simple bottom-up type inference. Unfortunately in presence of more
advanced inference, reflecting type of expression isn’t independent from the
rest of typing process. In order to enable this feature to work in general way
we must interweave macro expansion with typing and allow macros’ param-
eters to be marked as already typed code. This way compiler can handle
macro expecting typed code in a special way.
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Maya language This feature exists in Maya language [5] in a limited form.
Maya allows annotating macro parameters with a structure and expected
static type of input AST nodes. They can also be specified as unparsed
bracket trees (in a similar way to our token groups). Then before particu-
lar expression is chosen to be expanded by some macro the analysis of its
sub-expressions from left to right is being done. The delayed parsing is also
performed. Finally when only one macro is applicable, it is expanded. Maya
is a language without type inference and such approach is simpler to imple-
ment.

7.1 Type inference algorithm

To explain details of implementation we must first introduce the general
description type inference engine used in Nemerle[27].

It is based on on-line constraint solving combined with deferral of cer-
tain typing actions. Compiler gathers sub-typing information about type
variables in calls and builds the relation graph describing it. The graph is re-
quired to be consistent all the time, so any contradictious typing constraints
are detected early and can be reported with proper location in source code.
If typing algorithm finishes, there are two possible outcomes. When informa-
tion stored in graph yields unambiguous type annotations for the program,
then is succeeds. Otherwise an error occurs meaning that some expressions
are ambiguous or there is not enough information for resolving their types.

In order to provide constraint solver with data, compiler processes decla-
rations and expressions in methods’ bodies. Each sub-expression receives a
fresh type variable, which is added to the constraints graph. Algorithm pro-
ceeds with bottom-up analysis and updates current requirements on existing
type variables. Obtaining type of some expression, for example member ac-
cess or overloaded function call requires that types of their sub-expressions
are known. If they are not, the typing of such node is deferred and stored into
the queue. Compilation is then continued and more information is gathered.

The mentioned queue is called delayed typings queue and after the main
typing pass described above finishes it is processed from the beginning. Each
expression, which we are able to type here might give additional constraints
on other expressions, and so on. The algorithm is thus executed until a fixed
point is reached. If there are still some delayed expressions at this stage the
error is reported.
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7.2 Delayed macro expansion

The algorithm presented in previous section is perfectly suited for the needs
of delaying macro expansion.

If one of the parameters of given macro is marked with :TExpr, then it is
not expanded at the first step of main typing pass analysing the expression.
It is added to the delayed typings queue instead and only arguments for
which user requested type information are processed further as part of the
type inference algorithm. This way macro gets expanded just after compiler
gathers enough information for setting the final type information of specified
parameters.

Consider the foreach macro mentioned earlier.

macro foreach (var, collection : TExpr)

{

// collection contains full information about its type

}

Now its expansion is deferred until expression supplied as second argu-
ment is fully typed. It is then passed to macro as object of type TExpr, which
is compiler’s representation for nodes of correctly type-checked abstract pro-
gram tree.

Note that the invocation of foreach macro do not bring any new infor-
mation for the use of type inference engine. In that sense it is completely
transparent for the engine and is treated as one more expression, which needs
full type information to be compiled. Fortunately this information can come
from other place, which is possible thanks to the constraints solver. For
example

def f (col) {

// col is of unknown type at this point

foreach (x, col)

print (x);

1 :: col // but here we know col must be list[int]

}

f ([1, 2, 3]) // also this expression yields the type of col

7.2.1 Specifying type information

Sometimes we want to help compiler to infer the types. The standard way
to do this in Nemerle is by type enforcement expression expr : type. Such
an expression can also be generated by macro. But with macros requesting
typed parameters we would like to specify their types as part of the macro
declaration.

The syntax to do this is
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macro if_macro (cond : TExpr [bool], e1, e2)

{

<[ match ($(cond : typed)) {

| true => $e1

| false => $e2

}

]>

}

We parametrize the TExpr with the expected type. This way compiler can
immediately add a new tight constraint to the solver.

One more thing to note in above example it the use of $(cond : typed).
It is the additional splice syntax used for embedding already typed expres-
sions (like those obtained in parameters with :TExpr).

7.3 Matching over type of expression

All the nodes of TExpr tree have type information associated with them.
We can access it through the .Type property, which returns type variable
(mentioned in section 7.1) bounded with given expression. In case of macro
parameters the type variables are already fixed and concertised types repre-
sented by MType variant.

User can use standard pattern matching to decompose those objects.
Macro can then generate code according to the structure of type. Also the
utilities from compiler API can be used to check presence of given types in
sub-typing relation, etc. The down side of this approach is that customizing
even simple macro with type reflection needs considerable code to be writ-
ten and moreover much knowledge about compiler’s internal structures and
API. Macro system should support choosing implementation according to
the parameters’ type more natively.

7.3.1 Macros overloading

To solve the problem we can extend the treatment of delayed macro expan-
sions in a similar way to overloaded function calls. This way several macros
can be defined varying only on the expected type of parameters marked to be
included into typing. Such extension naturally fits into algorithm of choos-
ing overload possibilities, because both of them require full type information
before finishing.

In connection with delayed parsing this feature allows syntax of the lan-
guage to be dependent on the static type of expressions involved. We can
mark some macro parameters as :TExpr and others with :Token, the only
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limitation here is that expressions specified for typing must occur as standard
expressions in syntax pattern. This enforces some specific shape on patterns
- token groups must be separated from expressions.

7.4 Attaching macros to class members

Another way of very selective macro expansion is a direct overriding of given
class member reference. We want to specify that every use of method overload
foo(x : int y : string), should be intercepted and instead of emitting the
run-time function call some chosen macro should be inserted and expanded
with original parameters of call supplied to it.

The idea (present also in OpenJava [37] or a special case of Maya [5] type-
driven macros) is rather a simple extension of compiler, but in connection
with code quotation and other features of Nemerle meta-system it presents
considerable increase of expressibility.

As a motivating example consider a problem of FLYWEIGHT [18] de-
sign pattern mentioned in OpenJava paper [37]. It focuses on objects-
sharing and requires that user should call a method of special factory mod-
ule to obtain instances of some class instead of calling constructor directly.
We would like the expression Glyph(’c’) to be replaced automatically by
GlyphFactory.CreateCharacter(’c’), but without introducing a Glyph

macro, which would capture every call to Glyph (even the incorrect over-
loads), but would not work with qualified calls, like MyApp.Glyph. To do
this, we write a macro

macro glyph_capture (parm)

{

<[ GlyphFactory.CreateCharacter($parm) ]>

}

and attach it directly to the proper constructor of Glyph class.

class Glyph {

...

[Nemerle.Macros.Attach (glyph_capture)]

public this (c : char) { ... }

}

This feature is especially useful when we want an accurate and convenient
tool for replacing some functions calls with alternative code (like in aspects-
oriented programing).
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8 Related work

In following sections we summarize related work on the topic of meta-pro-
gramming, especially with features similar to Nemerle.

8.1 MetaML

MetaML [36] is a statically typed functional programming language with spe-
cial support for program generation. It provides three staging annotations,
which allow the construction, combination and execution of object-programs.
The notion of type-safety of MetaML is strong: Not only is a meta-program
guaranteed to be free of run-time errors, but so are all of its object-programs.
It was developed mainly with multistage programming on mind, especially
with focus on run-time code generation and cross-stage persistence.

The MetaML’s type system unlike Nemerle’s performs static typing of
code under brackets. It introduces the notion of level of expression, which
is modified by staging annotations. Values can be implicitly marked by
compiler as cross-stage persistent, which is inferred by comparing the level
at which variable is declared and used. MetaML is implemented purely
in interpretive environment, which greatly simplifies handling of cross-stage
persistence.

8.1.1 Static-typing vs run-time

The largest advantage of MetaML over Nemerle is the type-safety guarantees
for generated code. Unfortunately this feature comes with several important
trade-offs.

First, it limits the flexibility of code generation (as shown in section 4.2)
by forbidding construction of code referencing variables not statically in scope
of the quoted code. The property referred to as closed code forces user to use
the language purely as multi-stage computation framework and not for pro-
gram generation. Symbols used in object-program cannot be parametrized
by meta-function input. This is particularly important when we want to ap-
ply meta-programming to object-oriented elements of program, like classes
and their members, whose definitions are separated from places of use.

Another related issue is inability to break hygiene, which is very useful in
implementing domain-specific languages. Again, in statically typed object-
programs we expect every symbol to be bound at the compile-time of meta-
program. But when some macro is able to break hygiene it is also able to
introduce definitions, which can capture variable references in the context of
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macro use, so they must be bound after macro expansion. This effectively
prevents static-typing.

The approach we have chosen in Nemerle is not strictly throwing away
idea of type-safety. Our system is a compile-time meta-programming frame-
work, where all the program generation and transformation is being done
before the actual object-code is executed. In a result, we type-check the
transformed object-programs and it still happens before the run-time. We
mostly lose the earlier error detection, which increases the development and
debugging time. The real problem would occur only after using the system
for run-time code generation. From the model point of view the terms run-
time and compile-time we use here are just two stages of computation, to
which we should also add the phase of macro compilation. But in real-life
software development there is an important difference between the last stage
(run-time) and all the previous ones - it is executed by user, while the others
are run by developer of application. Thus the highest priority is to avoid as
much errors as possible at the last stage. Our system fulfills this goal quite
well.

Abandoning the strong typing approach seems to be the common way of
increasing expressibility in compile-time meta-programming languages like
Template Haskell [30].

8.2 Template Haskell

Template Haskell [30] does the interesting mix of ideas from MetaML with a
more ad hoc approach - using algebraic data-types side by side with quota-
tions for constructing code, delayed typing of object-code, breaking hygiene.

The brief list of differences and similarities to Nemerle macros is:

• Template Haskell resolves bindings during translating of quotations,
which brings ability to reason about type-correctness of object code,
before it is fully expanded. It allows detecting errors much earlier.
Nevertheless, the presence of $ splicing construct makes typing post-
poned to next stage of compilation, in which case new bindings must
be dynamic.

• Template Haskell macros are completely higher-order, like any other
function: they can be passed as arguments, partially applied, etc. This
however requires manually annotating which code should be executed
at compile-time. We decided to make macros callable simply by name
(like in Scheme), so their usage looks like calling an ordinary func-
tion. We are still able to use higher-order functions in meta-language
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(functions operating on object code can be arbitrary), so only the use
of top meta-function (prefixed with macro) is triggering compile-time
computations.

• Breaking hygiene is limited in Template Haskell mostly to variable ref-
erences. Declaration splicing is allowed, but can occur only in top-level
code and requires special syntax. We do not impose such restrictions,
which seems a good way of taking advantage of binding names after
macro expansion and imperative style present in Nemerle. It is natural
for an imperative programmer to think about introduced definitions as
about side effects of calling macros, even if these calls reside within
quoted code.

• Some simple operations are possible to be performed on type decla-
rations. We introduce general macros operating on object hierarchy,
which are able to imperatively modify it. Moreover, they look like at-
tributes attached to type definitions, so again programmer does not
have to know anything about meta-programming to use them.

There are still many similarities to Template Haskell. We derive the idea
of quasi-quotation and splicing directly from it. Also the idea of executing
functions during compilation and later type-checking their results is inspired
by Template Haskell.

An important observation is that usage of algebraic types for code con-
struction and decomposition seems to be required in Template Haskell only
for the purpose of solving a few specific problems with quotation syntax
and for doing pattern matching on code. For example program constructs
holding variable size data (like tuples, list literals, sequences, etc.) cannot
be expressed in TH quotation syntax. Instead of using much more verbose
data-type notation, we have introduced the ..$exprs (where exprs holds
list of expressions) syntax, which is similar to Lisp comma-atsign (,@) and
creates an expression representing sequence of other expressions. Also ex-
tending pattern matching with quotation syntax is better than relaying on
the direct matching on the nodes of internal compiler’s data-structures.

8.3 Lisp

Lisp [31] had meta-programming capabilities in the early times when Timo-
thy Hart introduced macros to the language [32]. It gave a powerful tool to
the programmers, but often suffered from the problem of inadvertent name
capture, which could be solved only by explicit usage of gensym in every
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macro utilizing temporary variables. The problem was later addressed by
Scheme hygienic macros.

The simple and uniform structure of syntax allows treating code as data
in a convenient way. Nevertheless, Lisp uses a special syntax for constructing
code. Its Nemerle equivalents are presented in following figure:

Name Lisp Nemerle
quasi-quote ‘ <[ ]>

unquote , $

splice ,@ ..$

8.4 Scheme

Scheme [1] is a statically scoped dialect of the Lisp programming language. It
is the first programming language to support hygienic macros, which permit
the syntax of a block-structured language to be extended reliably.

Our system has much in common with modern Scheme macro expanders
[14]:

• Alpha-renaming and binding of variables is done after macro expansion,
using the context stored in the macro in use site.

• Macros can introduce new binding constructs in a controlled way, with-
out danger to capture third party names.

• Call site of macros has no syntactic baggage, the only place where
special syntax appears is the macro definition – this implies simple
usage of macros by programmers not aware of meta-programming.

Still maintaining the above features we embedded the macro system into
a statically typed language. The generated code is type-checked after expan-
sion. We also provide a clear separation of stages – meta-function must be
compiled and stored in a library before use.

Works on Scheme last quite long, and many interesting features have
been proposed. For example first-class macros in [7] seem to be possible to
implement in Nemerle by simply passing functions operating on object code.

8.5 MetaOCaml

MetaOCaml [9, 20] is designed as an implementation of the basic multi-
stage programming ideas from MetaML. It incorporates MetaML’s annota-
tion language and high-level code representation of delayed computations
into OCaml language. It is a very interesting work on bringing multi-stage
programming into a wider use.
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The Run construct together and side-effects caused problems in static
typing of meta-language and in initial paper [9] authors decided to always
type-check generated code before running it. It was recently addressed in
[33] by special analysis in type-system, which parts of program are runnable.

The implementation status of MetaOCaml shows the difficulty of per-
forming run-time code generation using the native code compiler. It requires
developing a framework similar to the .NET run-times, which would be able
to generate, JIT compile and run code on fly.

8.6 MacroML

MacroML [19], the proposal of compile-time macros on top of an ML lan-
guage. It is implemented as a translation to MetaML constructs and inherits
its ideas of static typing the object-code. MacroML additionally enables pat-
tern for introducing hygienic definitions capturing macro use-site symbols. It
do not allow generating symbols, which could bind to declarations in context
of macro use (like our $(x : usesite)), but allow reusing name supplied as
macro parameter in its body. This isn’t an answer for implementing domain-
specific languages, but allow introducing new binding constructs. It is done
without need to break typing of quotation before expansion.

Macros in MacroML are limited to constructing new code from given
parts, so matching and decomposing of code is not possible.

8.7 CamlP4

CamlP4 [13] is a preprocessor for OCaml. Its LL(1) parser is completely
dynamic, thus allowing quite complex grammar extensions to be expressed.
Macros (called syntax extensions) need to be compiled and loaded into the
parser prior to be used. Once run, they can construct new expressions (using
quotation system), but they work only as parse tree level transformations.
It is not possible to interact with compiler in more depth or perform general
computations inside the transformers.

8.8 C++ templates

C++ templates [38] are probably the most often used meta-programming
system in existence. They offer Turing complete, compile-time macro sys-
tem. However, it is argued if the Turing-completeness was intentional, and
expressing more complex programs entirely in the type system not designed
for this purpose is often quite cumbersome. Yet, the wide adoption of this
feature shows need for meta-programming systems in the industry.
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There are a few lessons we have learned from C++ example. First is to
keep the system simple. Second is to require macro precompilation, not to
end up with various problems with precompiled headers (a C++ compiler
must-have feature, because of performance).

9 Conclusions

We have presented an advanced compile-time meta-programming system in-
corporated into modern functional and object-oriented language. The system
allows for convenient extending of core language with new constructs and
syntax at both expression and class levels. It presents an unique approach
of giving macros ability to reflect static information gathered by compiler.
They have the property of automatic hygiene and are easy to use. The sys-
tem proved its usefulness in implementation of Nemerle compiler and various
macros proposed by users.
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